Best Places To Locate Online Gaming

On the web video game includes a number of different forms and even styles. One can find MMORPGs, or simply Greatly Multiplayer Via the internet Place Using Games, an income can be multiplayer activities just like Mafia, Yoville along with Poker. In accordance with whatever activity you prefer, one can find activities to install in relation to have fun with layout each person. „Best Places To Locate Online Gaming“ weiterlesen

Considerable school is actually a huge liability, nevertheless it could also be plenty of fun.

Essays have to be previously unpublished. If you discover that it’s troublesome to compose essays, consider speaking about the essay topic whilst recording the conversation. Employing an outline permits you to present your arguments and ideas in a way that supports your conclusions, yielding a more effective essay. An essay isn’t a overview of a publication or an report. „Considerable school is actually a huge liability, nevertheless it could also be plenty of fun.“ weiterlesen

CNC Fräse Teil 6

Hier ist nun der Umbau Bericht von der CNC Fräse zum Lasercutter. Durch diesen Umbau kann meine Fräse binnen weniger Minuten von Fräse auf Lasercutter umgerüstet  werden und natürlich auch genau so schnell wieder zurück zur CNC Fräse.

Leider unterstützt die Steuerplatine meiner Fräse nur An und Aus für Laser- Module. Eine PWM Steuerung also eine Leistungsregelung die für stärkere Laser unbedingt erforderlich ist, ist nicht vorhanden.

So musste ich zunächst mal eine neue Steuerplatine mit neuerer Firmware besorgen. Hier gibt es  zahlreiche Optionen. Ich habe mich für den direkten Nach- Nachfolger der Steuerplatine entschieden, die bei meiner Fräse original mitgeliefert wurde, einem Woodpecker 3.0 Board. Zum Einen kam die neue Woodpecker 3.4 Platine gleich mit einem Gehäuse und außerdem war ich mir da am sichersten, das sie ohne irgendwelche Probleme mit meiner Fräse zusammen arbeitet. Bei Aliexpress kostet diese Platine 24€. Ich habe allerdings mehr bezahlt, weil ich ungeduldig war und nicht so lange auf die Lieferung der Platine aus China warten wollte. Letztendlich kam die Platine aus Deutschland massiv verspätet an, so das es sich nicht gelohnt hat, das Extra Geld auszugeben. Der Verkäufer bekommt deswegen auch keine positive Bewertung von mir.

Hier sieht man die beiden Platinen direkt nebeneinander.

Man erkennt schön das Gehäuse, den Lüfter für die Steppermotor Treiber und auch, das der (rote) Anschluss für den Laser  3 Pins hat und nicht nur 2 wie auf der alten Platine (der weiße). Genau dieser Unterschied ist es, der den Tausch zwingend erforderlich machte. Der Umbau selbst ging zügig. Die Kabel von der alten Platine abziehen und dann die Platine abschrauben.  Dann die neue Platine anschrauben. Das geht, da nun das Gehäuse die Aufgabe der Abstandshalter zur Kurzschluss- Vermeidung übernimmt, mit viel weniger Fummelei.

Daneben hat die neue Platine einen Ein- und Aus- Schalter und einen Anschluss für eine manuelle Steuerung. Der Ein/Aus Schalter ist ein Segen, denn der verbaute Lüfter ist nervtötend laut. Irgendwann wird er garantiert mal ausgetauscht, das steht fest. Der Anschluss für die manuelle Steuerung ist ebenfalls eine echte Verbesserung. So kann man die Fräse auch ohne „CNC“ verwenden, wenn man möchte. Obendrein ersetzt sie auf diese Art tatsächlich eine „Mini- Standbohrmaschine“  bzw einen Bohrständer für eine Proxxon oder Dremel… Die Handsteuerung habe ich aber noch nicht, wird sich aber, da sie nur ein paar Eros kostet, mit Sicherheit  irgendwann man dazu gesellen.

Leider haben die Stecker auf der Steuer- Platine und dem Steuerteil des Laser- Moduls nicht die gleiche Belegung, wie man hier schön sehen kann. Die Platine an der Fräse hat die Belegung: +12V – PWM – Masse

Und das Laser- Modul hat: +12V – Masse – PWM

Um das auszugleichen muss man entweder ein entsprechendes Kabel selbst konfigurieren oder man „pult“ an einem der Stecker zwei Kontakte aus dem Stecker- Gehäuse und fügt sie entsprechend wieder ein.

Das war aber auch die letzte Schwierigkeit beim Umrüsten. Das Laser Modul selbst kommt statt dem Spindel- Motor in die Z- Achsen Halterung. Dort sind entsprechende Einkerbungen bereits vorhanden. Dann nur noch die Kabel wieder anstecken:

und aus der CNC Fräse ist ein Laser- Cutter geworden:

Ich habe die neue Platine natürlich zuerst mit dem Spindel- Motor ausprobiert, um zu sehen, ob die „alte“ Funktionalität als CNC Fräse erhalten geblieben ist. Dabei gab es zunächst richtige Probleme, denn die Steuer- Software hat nicht mehr funktioniert. Weder das bei der Fräse mitgelieferte GRBL- Control noch das erweiterte  Nachfolger- Programm Candle hat mit der neuen Platine zusammen gearbeitet. Nach einem Besuch auf der Webseite von Candle war aber schnell klar, dass das völlig normal ist, da die GRBL Firmware 0.9, die auf der alten Platine drauf ist, nicht mehr mit der neuen Firmware 1.1 kompatibel ist und andere Software benötigt. Also schnell die zu 1.1 passende Candle Version herunter geladen und installiert und schon lief die Fräse wieder genau so, wie sie sollte.

Ich muss noch viel probieren und üben, vor allem, da es keinerlei Dokumentation zu dem Laser Modul gibt. Zum Beispiel unterstützt der Controller bzw die GRBL Firmware 1.1f zwei Werte- Bereiche für die Leistungsregelung des Lasers. GRBL ist eine Open Source Firmware für verschiedene CNC Maschinen wie Plotter, Fräsen, Lasercutter oder auch 3D Drucker, wobei GRBL im 3D Bereich nicht ganz so gängig ist. Aber fast alle preisgünstigeren CNC Fräsen und Lasercutter verwenden GRBL als Firmware. Natürlich auch meine Maschine.

Die Wertebereiche gehen einmal von 0-255, was sich für mich als Computer Nerd ziemlich vertraut und „normal“ anhört. Das entspricht nämlich genau 8 Bit oder 2^8 oder ein Byte (ein Buchstabe, vereinfacht ausgedrückt), ein sehr gängiger Werte- Bereich. Das habe ich natürlich zuerst ausprobiert. Aber damit bekomme ich nicht mal ein leichtes Grau auf weißes Papier gezaubert. Von Schneiden ganz zu schweigen. Der andere mögliche Werte Bereich bei GRBL ist 0-12000. Ein „kleiner“ Unterschied, oder? Das Zweite ist „natürlich“ der Bereich, den ich für mein Laser- Modul verwenden muss. Ganz andere Größenordnungen, aber egal, um so feinfühliger kann man den Laser regulieren. Aber das musste ich erst mal austüfteln, weil es nirgends beschrieben steht, nicht mal im Internet…

Für erste Tests habe ich die Verpackung von Schmelzkäse- Scheiben hergenommen. Beim ersten Einschalten des Lasers lief der auf 100% Leistung, wobei der Karton sofort in Flammen aufging. Wie vermutet sind 15 Watt für Karton massivst zu viel.  Nachdem ich die Leistungssteuerung im Griff hatte (Den Karton habe ich mit nur 5% Leistung sauber geschnitten)  habe ich das als Ergebnis bekommen:

Es ist schon erstaunlich, wie präzise und filigran so ein Laser schneiden kann. Und das selbst, wenn das Material lediglich eine Schmelzkäse Verpackung ist. Die Spitzen des Sterns sind selbst in dieser starken Vergrößerung immer noch spitz. Der Stern ist ca. 7 mm groß und das Quadrat genau 19,8 x 19,8 mm. Es wurde mit 20 x 20 mm in Inkscape gezeichnet, womit auch der G-Code erzeugt wurde. Für den allerersten Versuch, ganz ohne das ich irgendeine Ahnung von der Sache habe und ohne irgendwas zu kalibrieren, ist das gar nicht so schlecht, denke ich. Falls ich richtig im Kopf gerechnet habe, sind das gerade mal 1% Abweichung. Der Ausschnitt im Material ist übrigens 20,6 x 20,6 mm, was eine Schnittbreite von 0,8 mm entspricht. Mit mehr Übung beim Fokussieren geht das sicher noch besser.

Dann habe ich ein wenig mit Holz experimentiert. Nachdem ich für Karton den Vorschub auf 500 mm/min und die Laser- Leistung auf nur 5% stellen musste, um einen sauberen Schnitt in einem Durchgang hin zu bekommen, ist bei dem billigen 4 mm dicken Baumarkt- Bastel Sperrholz schon etwas mehr Power nötig. Sperrholz an sich ist für Dioden Laser nicht besonders gut geeignet. Das eigentliche Holz selbst stellt kein Problem dar. Aber der Leim, mit dem die einzelnen Schichten des Sperrholz verleimt sind, reflektiert das Laser Licht, so das es meist erst gar nicht zu einem Durchtrennen der Leimschicht kommt. Man braucht schon viel „Bums“, um Sperrholz mit einem Dioden- Laser zu schneiden.

Dazu habe ich den Vorschub halbiert, also auf 250 mm/min und natürlich mit voller Leistung gearbeitet. Trotzdem benötigte ich drei Durchgänge, um das 4 mm Sperrholz zu schneiden. Im Prinzip je Schicht des Holzes einen Durchgang. So ließ es sich aber einwandfrei schneiden.

Außerdem habe ich auch das Gravieren versucht. Dazu habe ich die „Karton“ Leistung (also nur 5% sprich 0,75 Watt) aber mit der „Holz“ Geschwindigkeit probiert. Wieder auf dem Bastel- Sperrholz, wobei diesmal der Leim keine Rolle spielt, da die Gravuren ja nicht so tief ins Holz eindringen…

Das Ergebnis kann sich durchaus sehen lassen, finde ich:

Was mich auch erstaunt, ist die Stabilität der ausgeschnittenen Teile (sowohl Holz als auch Karton). Durch das Lasern werden die Fasern an den Kanten nicht zerrissen wie beim Schneiden oder Sägen üblich, sondern verschmolzen. Das muss wohl die Stabilität spürbar erhöhen.

Im Moment bin ich jedenfalls schwer begeistert, obwohl ich mich noch sehr wenig mit den ganzen CAD Software Geschichten auskenne und noch vieles ausprobieren und auch büffeln muss. Die Beispiele sind mit Inkscape 0.9.4 und mit Laser GRBL als Steuerprogramm gemacht worden. Um in Zukunft aber „perfekte“ Modelle zu konstruieren, muss ich mich bestimmt noch ein paar Hundert Stunden lang in die entsprechende Software einarbeiten. Wobei ich noch gar nicht weiß, welche Software eigentlich die „Entsprechende“ für mich ist bzw sein wird. Aber zumindest gibt es viele Möglichkeiten, auch im Open Source bzw Freeware Bereich…

Zurück (CNC Fräse Teil 5)

Mein erster Besuch bei der AHW

Vor einiger Zeit war es mir vergönnt, die wunderbare AHW Anlage besuchen zu dürfen. Neben dem im GEC Baubericht schon eingebundenem Video sind auch ein paar Fotos entstanden, die außer der GEC auch meine neue Bachmann 4-4-0 „American“ zeigen, die noch nicht auf RC Betrieb umgerüstet ist und auch noch keine „RTR- Beschriftung“ erhalten hat, also noch nicht „offiziell“ in den Dienst gestellt wurde. Auf der AHW kann sowohl mit DCC als auch mit RC gefahren werden, von daher konnte ich auch die ab Werk mit einem DCC Decoder ausgerüstete „American“ mal ausprobieren. Obwohl die „American“ vor allem die deutlich kürzere „Alte“ Variante, die ich als Modell habe, eher eine sehr kleine Schlepptender- Dampflok ist, so ist sie für die Waldbahn- Anlage doch etwas groß geraten. Für meine RTR sollte sie aber nicht zu groß sein und ist dafür vorgesehen, einen der Touristenzüge, einen der „Theme Trains“ zu ziehen, und zwar den „Silverlight Express“, einen Zug der Durango & Silverton Narrow Gauge Railroad. Das ist eine noch heute (inzwischen natürlich museal) aktive Eisenbahnlinie in den Rocky Mountains, auf der man im 21’ten Jahrhundert noch immer genau so reisen kann wie zu Zeiten des Goldrauschs im ausklingenden 19’ten Jahrhundert. Auch wenn man es beim Namen des Zugs anders vermuten würde, sind die Personenwagen des Silverlight Express Gelb und nicht Silber. Das passt natürlich perfekt zu den Landesfarben von Terthana.

Die „American“ mit ihrer Achsfolge von 2-B (oder Amerikanisch 4-4-0) ist wohl die am typischten  aussehende Dampflok aus der Pionierzeit der amerikanischen Eisenbahn und trägt deswegen ihren Namen „American“ zu Recht, wie ich finde. Und genau aus diesen Gründen musste ich unbedingt eine „American“ haben.

 

Und hier noch mal, weil es dazu passt, das Video von der Probefahrt meiner GEC:

 

Vorbildfotos der C-50

Hier gibt es einige Fotos vom Vorbild meines neuen Projekts, der C-50. Die Fotos stammen nicht von mir, sondern wurde mir von Andre, einem sehr netten Forum- Kollegen zur Verfügung gestellt. Er hat die Fotos in den letzten Jahren bei verschiedenen ungarischen Schmalspurbahnen aufgenommen. Die C 50 ist auch heute noch verbreitet im Einsatz, wie man sieht. Außerdem kann man die unzähligen möglichen Varianten erkennen. Es gibt sogar eine Lok mit abgeschrägten Vorbauten, die fast gar nicht mehr nach „C-50“ aussieht, aber doch eine C-50 ist.

Mein neues Projekt, eine ungarische C50

Nachdem die GEC im Prinzip fertig ist, wollte ich, obwohl es eigentlich noch genug andere „Baustellen“ gibt, trotzdem mit meiner ersten komplett selbst konstruierten 0e Lok anfangen. Na gut, als Fahrwerk kommt ein H0 Großserien- Fahrwerk zum Einsatz, von daher wohl eher nur das Gehäuse selbst konstruiert, egal. Das Projekt ist eher langfristig angelegt. Mit sichtbaren Ergebnissen ist wohl frühestens im nächsten Jahr zu rechnen…

Als Vorbild habe ich mir die ungarische C50 ausgesucht. Die C-50 ist ein weit verbreiteter Loktyp der ungarischen Schmalspurbahnen und Feldbahnen. Die Herstellung der zweiachsigen Lokomotiven hat 1952 angefangen. Bis 1968 wurden insgesamt mehr als 250 Exemplare in praktisch allen Spurweiten zwischen 600 und 1000 mm gebaut. Zur Konstruktion wurden teilweise LKW Komponenten verwendet, was der Lok ihr uriges, unverwechselbares Aussehen verleiht. Sie hat etwa 50 PS / 37 KW und wiegt 7 Tonnen.  Keine wirklich beeindruckenden Werte. Sie wären es nicht mal für LKW. Trotzdem erreicht sie eine Höchstgeschwindigkeit von immerhin 30 Km/h und wurde sehr erfolgreich.

Das Gehäuse besteht im Prinzip aus 3 Quadern mit ausschließlich rechten Winkeln. Die Vorbauten sind kleiner und das mittig angeordnete Führerhaus überragt die Vorbauten sowohl in der Höhe als auch in der Breite. Lediglich die Kanten der Würfel sind etwas abgerundet, die einzige Schwierigkeit bei der Formgebung. Trotzdem oder gerade deswegen gefällt mir die C50 und wird nun meine erste Eigenkonstruktion werden.

Das Fahrwerk meiner geplanten C50 stammt erneut, wie schon der Antrieb der GEC von einer Roco Köf3. Das zweite Fahrwerk hat einen völlig anderen Motor, ohne Schwungmasse aber dafür mit imitiertem Lüfterrad, so das es, obwohl ursprünglich als „Motor- Spender“ für die GEC geplant, jetzt als Basis für eine C50 dient.  Der eigentliche Lok- Rahmen ist aber, trotz unterschiedlicher Motorisierung, identisch. Deswegen passt das C50 Gehäuse, sofern es irgendwann mal fertig ist, vermutlich auf jede Roco H0 Köf 3.

Das Modell soll komplett mit meinem Werkzeug- Bestand (CNC Fräse, Laser, ggfs. im Notfall 3D- Drucker) bei mir zu Hause entstehen. Außerdem sollen die Kosten so niedrig wie möglich ausfallen. Ich hoffe, das ich ohne Technik (Fahrwerk, Empfänger Akku) nicht viel über 10-20€ an Materialkosten hinaus komme.

Deswegen würde ich die geplante C50 eher als, wie man bei den RC- Modellbauern gerne sagt, „Semi-Scale“ Modell einstufen. Also eine gewisse Ähnlichkeit mit dem Vorbild soll durchaus vorhanden sein, auch sollen die Proportionen in Etwa stimmen. Aber eine bis zur letzten Niete und auf den 1/100 mm exakte Nachbildung ist nicht geplant. Dazu fehlen mir auch eindeutig die Fähigkeiten. 

Als Ausgangsbasis dient zum größten Teil eine 2- Seiten Ansicht, die überall im Internet kursiert. Deswegen lässt sich (zumindest für mich) der ursprüngliche Autor der Zeichnung leider nicht mehr ermitteln, weswegen ich ihn auch nicht erwähnen und mich bei ihm bedanken kann.

Ergänzend werden diverse Fotos vom Vorbild und auch von Modellen der C50 heran gezogen. Da es die C50 sowohl mit hoch ausgeschnittenen Seitenteilen gibt (wie auf der Zeichnung) aber auch mit tiefer herunter gezogenen Seiten, werde ich die zweite Version nachbilden. Ein Public Domain Foto der C50 mit tiefen Seiten habe ich auf Wikimedia gefunden. Ich habe es etwas aufgearbeitet, damit man die Seiten besser erkennen kann.

Durch die tief herunter gezogenen Seiten sieht man die maßstäblich ja zu kleinen Details des Roco H0 Fahrwerks nicht so deutlich. Die Zeichnung selbst habe ich mir, exakt auf 1:45 skaliert, ausgedruckt. Auf diese Weise kann ich leicht die benötigten Maße direkt aus der Zeichnung abnehmen.

Das H0 Köf Fahrwerk hat tatsächlich bis auf wenige 1/100 mm den exakt passenden Achsstand. Die Räder haben, zumindest wenn man die (natürlich) zu hohen Spurkränze mit berücksichtigt auch ziemlich genau den passenden Durchmesser.

Die noch verbleibenden Ungenauigkeiten bei Achsstand und Rad- Durchmesser  kann man meiner Ansicht nach vernachlässigen. Auch die Höhe des Umlaufblechs passt genau, wenn ich das neue Umlaufblech, wie geplant aus 2 mm dickem Polystyrol fräse.

Alles in allem passt das Roco Fahrwerk also sehr gut.

Damit man sieht, wie klein die C50 eigentlich ist, habe ich meine GEC mal auf die 1:45 Zeichnung gelegt, als Größenvergleich.

Die GEC ist doch erheblich größer und wuchtiger als es die C50 sein wird, obwohl dasselbe Fahrwerk zum Einsatz gekommen ist. Und das wo sie eher ein 0n30 Modell, also eher im Maßstab 1:48 gehalten ist.

Die Teile sollen vor allem aus 1 und 2 mm Polystyrol gefräst werden. Dazu kommen Teile aus Karton, den ich mit dem Laser schneiden will, wenn er eingetroffen ist. Die Karton Teile sind vorrangig für Details (Fensterrahmen, Türen, Scheibenwischer, usw) gedacht, wohingegen die PS Teile die Gehäuse- Basis darstellen. Die abgerundeten Ecken werde ich aus 3mm Viertelrundstäben (verfügbar von Aeronaut und z.B. auch bei architekturbedarf.de zu beziehen) herstellen, so das nur an den Ecken richtig geschliffen werden muss. Die Rundungen an der Seite sind dadurch vorgegeben und gleichmäßig.

Da diese Konstruktion doch etwas aufwändiger werden wird, habe ich beschlossen, die Zeichnungen zuerst in einer CAD Software (vielleicht LibreCAD) zu erzeugen. Wie es dann weiter geht, steht noch nicht fest. Eine Variante wäre, die DXF Zeichnung in Carbide Create zu importieren um hier die Pfade und den G-Code zu erzeugen. Eine andere, besonders für die Laser- Teile interessante Variante wäre es, die Zeichnungen entweder gleich in Inkscape zu erzeugen oder die DXF in Inkscape zu importieren und daraus den Laser- G Code zu generieren. Es gibt nämlich sowohl ein „klassisches“ G-Code Plugin für Inkscape (das Russische, wo aber inzwischen die Dokumentation auch auf Englisch besser geworden ist) als auch ein Plugin speziell um G-Code für Laser Cutter zu generieren.

Daneben könnte es auch interessant sein, alles gleich in FreeCAD zu machen. Damit lassen sich 2D und 3D Konstruktionen (für die ich bisher eher OpenSCAD verwendet habe) erledigen und es gibt, auch wenn ich es seinerzeit bei meinen Recherchen nicht gefunden habe, tatsächlich ein CAM Modul. Es nennt sich „Path Workbench“, weswegen ich das wohl bisher nicht entdeckt habe. Damit müsste man nur ein Programm „für Alles“ lernen, auch wenn FreeCAD sich eher an fortgeschrittenere „Konstrukteure“ richtet, also nicht besonders leicht zu erlernen sein wird. Man kann auch eine extern erzeugte DXF Zeichnung in FreeCAD importieren und dort weiter bearbeiten, also auch den G-Code generieren lassen.

LibreCAD ist leicht zu erlernen. Dafür gibt es auch unzählige Tutorials. Allerdings kann man in LibreCAD auf jeden Fall nur die eigentliche 2D- Konstruktion erledigen. Das Umwandeln der Zeichnung in Steuer- Code für meinen Maschinenpark geht damit nicht, genau so wenig wie 3D Konstruktion.

FreeCAD ist sehr viel mächtiger, dafür aber auch schwerer zu erlernen und hat seinen Schwerpunkt eher bei der 3D Konstruktion

Inkscape hingegen ist eher ein „freies, kostenloses CorelDraw“ und deswegen eher nicht optimal für CAD Konstruktionen geeignet. Dafür halt einfach zu bedienen und mit Plugins zum direkten Erzeugen des G-Codes ausgestattet…

Alle genannten Programme außer Corel Draw sind für jedermann kostenlos nutzbar und, bis auf Carbide Create, sogar OpenSource.

Anfangen werde ich mit der Konstruktion des Umlaufblechs, das ja an das Roco Fahrwerk angepasst und mit diesem verbunden werden muss. Vermutlich muss auch am Fahrwerk im Bereich des Original Führerhauses etwas weggefräst werden, da die C50 in 1:45 eher schmaler ist als die Köf3 in 1:87. Das wird sich aber während des Baus zeigen…

Sobald es neues zu sehen gibt, werde ich weiter berichten.

CNC Fräse Teil 5

Ich hab’s getan… Ich habe gerade ein Laser Modul für meine Fräse bestellt. Direkt in China über Aliexpress (wer das nicht kennt, Aliexpress ist das „Chinesische Amazon“).
Es ist allerdings kein 5.5 Watt Modul geworden und auch kein 10 Watt Modul. ich habe gleich „Nägel mit Köpfen“ gemacht und einen fokussierbaren 15 Watt Laser mit Netzteil bestellt, der auch noch langfristig durchgängig benutzt werden kann. Viele Module sind entweder nicht fokussierbar und/oder dürfen nicht länger als 30 Minuten am Stück arbeiten. Den Fokus kann man bei einer CNC Fräse ja zur Not noch über die Z-Achse einstellen, aber ich würde schon gerne mal Sachen über Nacht lasern lassen, ohne mir Gedanken darüber zu machen, ob statt dem Cutting- Material der Laser selbst weg schmilzt…

Man kann inzwischen die 15 Watt Module auch in Deutschland über Amazon oder Ebay bekommen. Allerdings zum doppelten Preis. Ich habe incl Porto nach Deutschland mit einem eingelösten Coupon (ca 3€) gerade mal gut 88€ für den 15 Watt Laser bezahlt. Bei Ebay wäre ich nicht unter 160€ fündig geworden…
Hier ein Link zu dem Modul:

https://de.aliexpress.com/item/4000059565689.html

Die Preise schwanken permanent, da wohl der Wechselkurs in „Echtzeit“ angepasst wird. Als ich bestellt habe, lag der Preis ohne Coupon bei ca 91€, 5 Minuten Später bei gut 92€…

Ankommen soll das gute Stück Ende September, Anfang Oktober. Wenn ich Pech habe, kommt dann noch Zoll (aka Mehrwertsteuer) drauf, was den Laser um ca 16€ verteuern würde (lohnt sich trotzdem). Mein Büro ist nur 2 Minuten zu Fuß vom Zollamt entfernt. Das wäre also zumindest logistisch kein Problem… In aller Regel kommen solche Luftpost- Briefe aber unbeachtet vom Zoll beim Empfänger an, vor allem, da die Chinesen keinerlei Hemmungen haben sowas mit einem Wert von unter 22€ und somit als nicht zollpflichtig zu deklarieren.

Aber es ist schon erstaunlich, wie sich die Preise entwickeln. Anfang des Jahres, als ich das erste Mal nach einem Laser für meine CNC Fräse geschaut habe, hätte ich für 90€ gerade mal ein 2,5 Watt Modul bekommen. Heute, gut ein halbes Jahr später, kosten die 2,5 Watt Module vielleicht noch 25€. Inzwischen gibt es nicht nur Module mit 6, 10 oder 15 Watt, es sind bereits die ersten 20 Watt Module aufgetaucht. Die bekommt man bereits ab gut 100€, allerdings ohne Elektronik und Stromversorgung. Die 20 Watt Module sind aber sehr lang und schwer und damit für meinen Geschmack zu viel für die Mechanik meiner Fräse. Doch auch schon mit dem nur ca halb so langen 15 Watt Modul kann man selbst auf Edelstahl „Eindruck“ hinterlassen, also gravieren. Zum vernünftigem Schneiden von Metall (Messing, Alu usw) müssten es aber etwa 10 Mal so viel Leistung sein. Dann (also ab 150 Watt Leistung) sind LED Laser aber deutlich besser als CO2 Laser geeignet um NE- Metalle zu verarbeiten. Da ich ohnehin kein „Metaller“ bin, sollte mir der 15 Watt Laser dann doch erst mal reichen, denke (hoffe) ich.

Heute ist das Laser- Modul eingetroffen, sogar eher als avisiert. Genau wie erwartet musste ich keine weiteren Gebühren (wie etwa Zoll oder Steuer) bezahlen. Da ich des Chinesischen nicht wirklich mächtig bin, kann ich nur Raten, was da auf dem Päckchen steht. Wenn ich das richtig interpretiere, so ist der Inhalt als Laser Modul deklariert und der Wert irgendwas mit „5“ angegeben worden. Welche Währung damit gemeint war und wie viel das in Euro ist, kann ich nicht beurteilen.  Vielleicht ist das aber auch gar keine Währung sondern eine Preisklasse oder ganz was anderes, keine Ahnung. Auf jeden Fall musste ich nichts weiter bezahlen oder machen, um das Modul in Empfang zu nehmen…

Anschließen und ausprobieren kann ich den Laser aber noch nicht. Zum Einen wurde kein Anschlusskabel von der Leistungseinheit zum Controller- Board meiner Fräse mitgeliefert und zum Anderen sind die bestellten Schutzbrillen noch nicht angekommen. Einen 15 Watt Laser ohne Augenschutz in Betrieb zu nehmen, selbst wenn es nur für einen kurzen Test ist, ist definitiv viel zu gefährlich. Aber ausgepackt habe ich das Modul und für ein schnelles Handy Foto hat es auch noch gereicht.

Das Modul selbst macht einen soliden Eindruck, ganz aus Metall und mit einer sauber fokussierbaren Optik. Offen liegende Platinen sind ja bei derartigen Geräten die Regel. Auch das Controller- Board an meiner Fräse liegt ja völlig offen. Das würde ich also nicht als Nachteil bewerten… Dafür ist die Leistungseinheit auf einem anständige Kühlkörper montiert, der zusätzlich noch einen 40mm Lüfter enthält. Wie laut das Teil ist, kann ich natürlich noch nicht sagen. Ich schätze aber, das der Betrieb als Lasercutter nicht mehr (eher deutlich weniger) Lärm verursacht als der Betrieb als CNC Fräse, trotz der zwei Lüfter, einer am Leistungsteil, einer direkt am Laser Modul..

Das Laser Modul selbst ist eher kleiner, als ich es erwartet hätte. Der Spindel Motor ist größer und schwerer. Von daher sollte der Laser keine große Belastung für die Fräse darstellen. Insofern wäre auch das 20 Watt Modul bestimmt kein mechanisches Problem gewesen. Allerdings ist mir ja schon bei meinem Modul mit „nur“ 15 Watt Leistung wirklich etwas mulmig zu Mute. 15 Watt sind für einen LED Laser doch schon richtig heftig viel. Erst mal sehen, was damit alles so machbar ist…

Leider ist auch keinerlei Anleitung dabei. Wie genau man das Laser Modul nun anschließt, muss ich erst im internet heraus finden.

Nachtrag 26.09.2019

Grade sind sowohl die bestellten Schutzbrillen aus China als auch der Laser- Karton von architekturbedarf.de eingetroffen. Somit kann ich übers Wochenende die Fräse zum Lasercutter umrüsten. Beim ersten Mal wird das natürlich etwas aufwändiger, da ich erst mal alle Kabel herstellen und verlegen muss. Später wird das Umrüsten von Fräse auf Laser oder zurück in wenigen Minuten erledigt sein.
Natürlich musste ich jetzt, wo ich eine Schutzbrille habe, das Laser Modul zumindest mal kurz ausprobieren. Ich habe ihn nur weg von mir gegen eine weiß gestrichene und mit Rauhfasertapete verkleidete Wand gehalten. In der Wandfarbe sind ebenfalls Aufheller, die im Laserlicht aufleuchten, ähnlich wie beim weißen Papier. Der eigentliche Arbeitsabstand des Lasers liegt etwa so um die 16 mm. Aber das Modul ist so stark, das selbst in 500 mm Abstand noch Spuren an der Wand zurück geblieben sind. Da ich 2 grüne Brillen bestellt habe, habe ich eine aufgesetzt und dann test halber mal die zweite Brille direkt in den Laserstrahl gehalten. Es kommt tatsächlich durchaus noch etwas vom Laserstrahl durch, aber die Aufheller in der Wandfarbe leuchten nicht mehr. Wobei aber der Kunststoff der Brillengläser dem Laser nicht wirklich lange standhält. Schon nach wenigen Sekunden gab es erste sichtbare Spuren auf der Oberfläche…
Direkt in den, möglichst auch noch fokussierten Laser sollte man auch mit so einer Schutzbrille keinesfalls schauen, das geht mit hoher Wahrscheinlichkeit schief. Im Normalfall ist der Laser ja fest montiert und zeigt gerade nach unten auf den Arbeitstisch der Fräse. Da ist wohl kaum genug Platz vorhanden (maximal 20 mm), um irgendwie die Augen bzw die Schutzbrille in den direkten Strahlengang zu bekommen. Um ja jederzeit mögliche Reflektionen und kurze Aufblitzer abzuwehren, sind diese Brillen sehr wohl geeignet. Trotzdem sollte man stets sehr vorsichtig und mit dem gebotenem Respekt mit so einem wirklich starken Laser umgehen. Das ist definitiv kein Kinderspielzeug und auch kein Party Artikel.

Der Geräuschpegel der beiden Lüfter ist eher niedrig, kein Vergleich mit dem Einsatz als Fräse.. Also gar kein Problem, so einen Lasercutter in einer Mietwohnung zu betreiben.

Zum Üben und ausprobieren werde ich aber nicht den teuren Laser- Karton, den ich in zwei Stärken, 350 g/m² und 700 g/m² geordert habe, verwenden, sondern dafür werden zerschnittene CornFlakes Schachteln verwendet. Dabei handelt es sich um ein durchaus gutes Material zum Basteln, weswegen ich keine CornFlakes (oder ähnliche) Kartons wegwerfe, sondern sammle. Kleiner Tipp am Rande…
Daneben habe ich noch jede Menge Balsa- und Sperrholz in verschiedensten Stärken. Auch damit werde ich experimentieren, bevor ich mich mal an dünnes MDF heran mache, was ich auch erst noch bestellen muss.

 

Zurück (CNC Fräse Teil 4) Weiter (CNC Fräse Teil 6)

GEC Diesel Lok Teil 6

Hier ist nun der (vorerst) letzte Teil des Bauberichts.

Da ein Besuch bei der AHW anstand, habe ich mich beeilt, um „Bill“ bis dahin fertig zu bekommen. Wer die AHW nicht kennt, das ist die private Waldbahn- Anlage eines sehr netten Kollegen aus dem Schmalspurbahn- Forum. In Insider- Kreisen ist diese Anlage, auf Grund der vielen Gäste, die dort immer wieder mal erscheinen, recht bekannt.  Ich hatte neulich das Privileg, die Anlage (und deren Betreiber) besuchen zu dürfen.

Nach der ersten provisorischen Probefahrt habe ich die Beleuchtung eingebaut. Insgesamt 3 warmweiße LED wurden eingebaut. Zwei LED sind für das Spitzenlicht und eine dritte LED zur Innenbeleuchtung des Führerstands eingebaut.

Der Vorwiderstand für das Spitzenlicht ist im roten Schrumpfschlauch versteckt. Für die Innenbeleuchtung wollte ich aber einen Widerstand mit einem höheren Wert verwenden, damit die Innenbeleuchtung nicht genau so hell ist, wie die Scheinwerfer. Diesen Wert hatte ich aber nur noch in „Normal“ und nicht in „Winzig“.  Deswegen sitzt der Vorwiderstand an der Stirnwand des Führerhauses. Hier soll er eine „Armatur“ imitieren (für was, bleibt der Phantasie überlassen). Da die Kabel und auch der Widerstand noch Grau lackiert wurden, fällt er dort überhaupt nicht auf.

Als nächstes wurden eine Ladebuchse für den Akku und ein Ein- und Aus- Schalter unter die Lok gebaut.

Oben ist die Ladebuchse, unten der Schalter…

Nun musste zunächst der Lack ausgebessert werden, wo er bei der unschönen Aktion mit dem Platz für den Motor beschädigt wurde. Leider ist dabei auch das Geländer arg in Mitleidenschaft gezogen worden. Deswegen habe ich kurzentschlossen einfach ein paar Geländer aus Polystyrol gefräst.

Diese wurden Gelb lackiert und dann an die Lok geklebt.  Damit ist die Lok so weit fertig.

Nun konnte sie auf der AHW eingefahren werden. Auch der Empfänger wurde hier programmiert, zumindest so weit, wie es für den Motor von Bedeutung war. Letzte Feinabstimmungen, vor allem auch für das Licht, habe ich dann nach meiner Rückkehr vorgenommen.

Zum Schluss noch  ein kleines Video:

 

Leider musste ich feststellen, das der über 20 Jahre alte Motor seine besten Tage bereits hinter sich hat. Bei der Fahrt selbst merkt man noch nicht wirklich etwas davon. Doch beim Anfahren ist eine viel zu hohe Spannung nötig, so das die Lok einen Satz macht, bevor man sie auf ein deutlich geringeres Tempo herunter regeln kann. Ich werde also in absehbarer Zeit noch mal an der GEC herum basteln müssen (deswegen das „vorerst“ im Titel). Sie wird dann aller Voraussicht nach einen Glockenanker- Motor von tramfabriek.nl bekommen… Der Motor ist winzig, hat viel Kraft und läuft extrem leise und auch sehr langsam. Dazu ist er erheblich preiswerter als ein Maxon oder Faulhaber Motor. In der Regel muss man für einen Maxon oder Faulhaber Motor mindestens vier mal so viel hinblättern wie für einen Tramfabriek Motor…

Zurück (GEC Diesel Lok Teil 5)

Treiber für PL2303 Adapter installieren

Hier möchte ich euch dabei helfen die sehr gängigen und weit verbreiteten USB-Serial Adapter mit einem PL2303 Chip zum Funktionieren zu bekommen. Auch wenn diese Chips weit verbreitet sind, sind doch bei Windows 10 keine passenden Treiber dabei. Das liegt daran, dass der ursprüngliche Hersteller dieses Chips die Produktion schon lange eingestellt hat und heute ausschließlich (vermutlich nicht lizenzierte) Nachbauten im Handel zu finden sind. Solche Nachbauten bekommt man nicht nur auf eBay, sondern überall zu kaufen, auch bei „seriösen“ Anbietern wie Conrad, Reichelt usw… Das Problem ist also allgegenwärtig. Adapter mit diesen Chips werden inzwischen in den aktuellen Treibern generell geblockt, obwohl die Treiber und Chips eigentlich tadellos funktionieren würden.

Abhilfe bringt die Installation älterer Treiber, die diese Blockade noch nicht beinhalten. Als ich selbst dieses Problem hatte, habe ich im Netz nach einer Lösung gesucht und sie letztendlich auf dieser Webseite gefunden:

Fake PL2303 – how to install on Windows 8.1

Die Anleitung dort ist für Windows 8.1, funktioniert aber exakt genau so auch unter Windows 10 oder auch unter Windows 7. Dort gibt es auch die Treiber zu laden, die ebenfalls mit Windows 7 – 10 funktionieren. Im unteren Drittel der Seite auf den Link „IO-Cable_PL-2303_Drivers-Generic_Windows_PL2303_Prolific“ klicken, dann wird der Treiber herunter geladen. Für alle, die des Englischen nicht so mächtig sind, hier noch mal eine Schritt für Schritt Anleitung auf Deutsch:.

Zuerst lädt man die Treber von der oben verlinkten Webseite. Dann installiert man ihn erst mal einfach so. Im heruntergeladenem Archiv ist eine .exe Datei enthalten. Diese einfach ausführen und den Anweisungen folgen. Das sollte eigentlich so weit noch jeder hin bekommen. Nun den Adapter an den PC anschließen. Dabei werden „natürlich“ automatisch die aktuellen Treiber installiert, die keine Funktionalität bieten. Wir müssen also die unpassenden aktuellen Treiber durch die älteren aber funktionierenden Treber ersetzen. Dazu müssen wir den Geräte- Manager von Windows öffnen. Bei Windows 10 geht das am einfachsten in dem man mit der rechten Maustaste auf den Startknopf drückt.

Ist der Geräte- Manager gestartet wird einen in etwa so ein Bild geboten:

Unter Anschlüsse (COM & LPT) taucht ein „Prolific USB to Serial Comm Port“ auf. Der tatsächliche Com Port (bei mir COM 7) hängt vom eigenen Computer ab. Die Nummer dahinter spielt aber keine Rolle. Wir müssen sie nur kennen, um später den richtigen COM Port im DT-Programmer auswählen zu können. Leider ist unser COM Port aber mit einem gelben Dreieck „verziert“. Macht man nun einen Doppelklick auf den Eintrag, dann erscheint ein weiteres Fenster. Hier kann man die nicht wirklich aussagekräftige Fehlermeldung lesen. Dieser Fehler ist die Folge des vorsätzlichen Blockens der PL2303 Chips und nicht wirklich ein Fehler. Um diesen Fehler nun zu beseitigen, klicken wir auf den Reiter „Treiber“.

Nun auf „Treiber Aktualisieren“ klicken und es erscheint noch ein Fenster.

Hier klicken wir auf „Auf dem Computer nach Treibersoftware suchen“.

Nun auf „Aus einer Liste verfügbarer Treiber auf meinem Computer auswählen“ klicken und anschließend auf „Weiter“.

Nun sollte in der Liste „Kompatible Hardware anzeigen“ mindestens 2 Einträge stehen. Der aktuelle Treiber hat hier die Version 3.8.28.0. Der Treiber blockiert aber unseren Adapter. Deswegen wählen wir die Version 3.3.2.105 aus, obwohl sie schon viele Jahre auf dem Buckel hat. Das ist der Treiber, den wir vorher von der oben verlinkten Webseite geladen und installiert haben. Sollte wieder Erwarten die Version 3.3.2.105 nicht in der Liste erscheinen, dann muss man die Treiber- Installation noch einmal ausführen…

Normalerweise verwendet Windows automatisch den aktuellsten Treiber. Das ist im Allgemeinen ja auch sehr sinnvoll. Nur in unserem Fall funktioniert das halt nicht wie gewünscht. Nachdem wir den „alten“ Treiber ausgewählt haben, einfach auf „Weiter“ klicken. Nach kurzer Zeit sollte dann dieses Fenster erscheinen.

Nun können wir auf „Schließen“ klicken und die Treiber- Installation sollte erfolgreich erledigt sein. Jetzt sollte das gelbe Dreieck im Geräte- Manager verschwunden sein und unser Adapter und somit unser Prog4 tadellos funktionieren.

Ein kleiner Hinweis noch. Sollte der Prog4 nicht einwandfrei funktionieren, dann steckt man den Adapter am besten direkt an den PC und nicht an einen USB Hub. Danach wird es höchstwahrscheinlich so sein, dass man die oben beschriebene Prozedur ab dem Öffnen des Geräte-Managers wiederholen muss, da der Adapter nun einen anderen COM Port erzeugen wird.  So habe ich auch die Screenshots für diesen Artikel erzeugt, in dem ich den Adapter einfach an einen anderen USB Port angesteckt habe.

GEC Diesel Lok Teil 5

Hier ist der 5. Teil des Bauberichts.

Sie fährt!

Nachdem die Lackierung weitestgehend abgeschlossen war, habe ich angefangen, die Technik einzubauen. Dabei gab es leider größere Probleme an einer Stelle, die ich nicht erwartet habe. Der Motor wollte auf einmal nicht mehr in sein Fach im Original- Köf Gehäuse passen. Durch die verschiedenen Lackierversuche und das Bad im Spiritus muss sich da wohl etwas verändert haben. Auf jeden Fall musste ich massiv am Weißmetall nacharbeiten. Dabei ist es zu Beschädigungen am Äußeren des Modells gekommen, die ich nun wieder reparieren muss. Das mache ich aber erst, wenn alles an Technik eingebaut ist und ich auch sonst nichts mehr an der Lok ändern muss.

Während den Anpassungen für den Motor habe ich nicht fotografiert. Wäre auch nicht schön gewesen… Na ja, irgendwann passte der Motor wieder und die Kabel zum Empfänger waren auch von unten nach oben durchgefädelt. Nun konnte ich mit der eigentlichen Arbeit anfangen.

Als erste Lage habe ich noch mal Ballast aufgeklebt. Darauf kam der 500 mAh Akku, den ich mit Doppel- Klebeband auf den Ballast geklebt habe. Dazu verwende ich gerne Klebeband mit einer dünnen Gummi- Schicht. Diese Art Klebeband wird z.B. zur Montage von Spiegeln usw verwendet. Es klebt sehr gut und das Gummi gleicht Unebenheiten ziemlich gut aus.

Außerdem entsteht so ein Hohlraum im Bereich der Kabel- Durchführung im Umlaufblech. Den Minus- Pol des Akkus habe ich an ein kleines Stück Lochstreifen- Platine angelötet. Diese Platine bildet die gemeinsame Masse (Minus Pol), die ja für den Empfänger, den StepUp und die LED notwendig ist.

Als nächstes habe ich den StepUp Regler an Minus angeschlossen. Den Plus- Eingang des Reglers habe ich nach unten zum Ein/Aus Schalter geführt. Dann habe ich zuerst mal eine Voreinstellung der Ausgangsspannung durchgeführt. Das war auch notwendig, denn der Regler lieferte so wie er eingestellt war,  ca 15 Volt. Das wäre für den RX61 vermutlich „tödlich“ gewesen.  Mit Hilfe eines Multimeters habe ich die Ausgangsspannung an dem blauen Spindel- Potentiometer auf etwa 9,5 Volt einjustiert. Nun konnte ich den RX61 an den Ausgang des StepUp Reglers und an den Motor anschließen.

Dann habe ich noch einen provisorischen Schalter unter der Lok montiert. Auf Dauer ist mir die Lösung mit dem Computer Jumper aber zu fummelig. Da wird noch was „richtiges“ gebaut. Aber für eine erste Probefahrt musste das reichen.

Und tatsächlich, sie fährt aus eigener Kraft. Allerdings ist der Antrieb etwas rau und laut. Nicht wirklich verwunderlich, ist die Köf ja mindestens 15 Jahre nicht mehr gelaufen. Auch wenn ich sie geschmiert habe, braucht es sicher noch eine Weile, bis sich alles wieder richtig eingespielt hat.

Nun müssen noch die LED für das Spitzenlicht und die Führerstandsbeleuchtung eingebaut und angeschlossen werden. Dann noch das Provisorium mit dem Schalter beheben und die Ausbesserung der Schäden, die beim Motor einpassen entstanden sind, dann ist die Lok fertig.

Zurück (GEC Diesel Lok Teil 4) –  Weiter (GEC Diesel Lok Teil 6)